Nederlands
  nl
English
  en
contact veelgestelde vragen
SMB
 
Symplectic Geometry of Integrable Hamiltonian Systems
Hoofdkenmerken
Auteur: Michèle Audin; Ana Cannas da Silva; Eugene Lerman
Titel: Symplectic Geometry of Integrable Hamiltonian Systems
Uitgever: Springer Nature
ISBN: 9783034880718
ISBN boekversie: 9783764321673
Prijs: € 44,35
Verschijningsdatum: 06-12-2012
Inhoudelijke kenmerken
Categorie: Differential
Taal: English
Imprint: Birkhäuser
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij Smartbooks