This book provides readers with a systematic and unified framework for identification and adaptive control of TakagiâSugeno (TâS) fuzzy systems. Its design techniques help readers applying these powerful tools to solve challenging nonlinear control problems. The book embodies a systematic study of fuzzy system identification and control problems, using TâS fuzzy system tools for both function approximation and feedback control of nonlinear systems. Alongside this framework, the book also: introduces basic concepts of fuzzy sets, logic and inference system; discusses important properties of TâS fuzzy systems; develops offline and online identification algorithms for TâS fuzzy systems; investigates the various controller structures and corresponding design conditions for adaptive control of continuous-time TâS fuzzy systems; develops adaptive control algorithms for discrete-time inputâoutput formTâS fuzzy systems with much relaxed design conditions, and discrete-time state-space TâS fuzzy systems; and designs stable parameter-adaptation algorithms for both linearly and nonlinearly parameterized TâS fuzzy systems. The authors address adaptive fault compensation problems for TâS fuzzy systems subject to actuator faults. They cover a broad spectrum of related technical topics and to develop a substantial set of adaptive nonlinear system control tools. Fuzzy System Identification and Adaptive Control helps engineers in the mechanical, electrical and aerospace fields, to solve complex control design problems. The book can be used as a reference for researchers and academics in nonlinear, intelligent, adaptive and fault-tolerant control.