Nederlands
  nl
English
  en
contact veelgestelde vragen
SMB
 
Adversarial Machine Learning
Hoofdkenmerken
Auteur: Anthony D. Joseph; Blaine Nelson; Benjamin I. P. Rubinstein; J. D. Tygar
Titel: Adversarial Machine Learning
Uitgever: Cambridge University Press
ISBN: 9781108327077
ISBN boekversie: 9781107043466
Prijs: € 100.74
Inhoudelijke kenmerken
Categorie: General
Taal: English
Imprint: Cambridge University Press
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij Smartbooks