Nederlands
  nl
English
  en
contact veelgestelde vragen
SMB
 
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Hoofdkenmerken
Auteur: Andrew Gelman; Xiao-Li Meng
Titel: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Uitgever: Wiley Global Research (STMS)
ISBN: 9780470090442
ISBN boekversie: 9780470090435
Editie: 1
Prijs: € 129,48
Verschijningsdatum: 22-10-2004
Inhoudelijke kenmerken
Categorie: Bayesian Analysis
Taal: English
Imprint: Wiley-Blackwell
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin  has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij Smartbooks